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Introduction

Thoracic trauma can initiate a systemic inflammatory 
response after trauma and is considered the most 
sensitive trauma to multiple trauma [1,2]. It was 
reported that thoracic trauma causes systemic effects 
such as increased release of tumor necrosis factor – 
alpha (TNF-α) and interleukin (IL)-6 pro-inflamma-
tory cytokines, other inflammation mediators, and 
activation of the complement system [3,4]. Moreover, 
it can cause secondary organ damage by increasing 
the number of polymorphonuclear leukocytes and 
other inflammatory cells in trauma patients [5,6]. 
Experimental studies have shown that complications 
such as lung injury [7,8], cardiac damage [9,10], 
hepatic injury [7,11], and immunodysfunction [4,12] 
develop after chest trauma in murine models. This 
may be a consequence of a systemic inflamma-
tory response involving strong pro-inflammatory 
cytokine release (TNF-α, IL-6, and IL-1β) following 

trauma [13,14]. There are numerous studies in the 
literature, including the reduction of the pro-inflam-
matory response following trauma.

Caffeic acid phenethyl ester (CAPE) is an 
important biological component of propolis pro-
duced by worker honeybees [15]. In vivo and in 
vitro experimental studies have reported that CAPE 
exerts immunomodulatory effects by suppressing 
T cell proliferation and lymphokine production 
[16–18]. Also, CAPE has strong anti-inflammatory, 
anti-oxidant, anti-apoptotic, and anti-neoplastic 
effects [19]. The anti-inflammatory effect of 
CAPE was reported in a diabetic rat model [20], 
ischemia-reperfusion model [21], lipopolysaccha-
ride-induced sepsis model [22], and hepatotoxic 
models [23–25]. Akgün et al. [26] have shown that 
CAPE administration reduces TNF and IL-6 levels 
as well as tissue damage in local spinal cord injury. 
However, no studies have examined the role of CAPE 
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ABSTRACT

Aim: This study was conducted to explain the anti-inflammatory activity of caffeic acid 
phenethyl ester (CAPE) in an experimental rat thoracic trauma model.
Materials and Methods: Forty adult (200–250 g) male Wistar albino rats were used. 
Rats were randomly divided into four groups: Control (n = 10), trauma model (n = 10), 
trauma model + CAPE (n = 10), and CAPE (n = 10) groups, respectively. CAPE treatment 
was administered intraperitoneally at a dose of 10 µmol/kg for 7 days. At the end of 
the seventh day, the rats were sacrificed under anesthesia. Serum interleukin 1-beta 
(IL-1β), IL-6, and IL-10 cytokine levels were determined as picogram per milliliter using 
the sandwich enzyme-linked immunosorbent assay method.
Results: In the trauma model, there were an increased IL-1β and IL-6 serum levels and 
decreased pro-inflammatory IL-10 serum levels compared to the control group (p < 0.05). 
CAPE treatment resulted in a decrease in IL-1β and IL-6 levels and an increase in IL-10 
levels (p < 0.05).
Conclusion: CAPE administration suppresses systemic inflammation in the thoracic 
trauma model by reducing the expression of pro-inflammatory cytokines IL-1β and IL-6 
and increasing the expression of anti-inflammatory IL-10.
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on inflammatory cytokines in thoracic trauma. In 
this study, the aim was to investigate the effect of 
CAPE on serum IL-1β, IL-6, and IL-10 inflammatory 
cytokine levels in experimental thoracic trauma 
induced in rats.

Materials and Methods

All experimental procedures were conducted after 
receiving permission from the Local Ethics 
Committee (Date: 17/05/2016 - Permission 
number: 2) at Namık Kemal University Application 
and Research Centre for Experimental Animals 
(NKU-DHUAM). Forty male Wistar albino rats 
were used in this study. Rats were housed under 
standard laboratory conditions (22°C ± 2°C; 60% 
humidity; and 12/12 dark light cycles) and were 
given a standard diet. Rats were divided into four 
groups (n = 10): control, trauma, trauma + CAPE, 
and CAPE. Thoracic trauma model was applied as 
described by Raghavendran et al. [27]. A 
cylindrical weight was dropped from a certain 
height (0.5 m) onto the right hemitho-rax of 
rats under ketamine-xylazine anesthesia (50–15 
mg/kg, intraperitoneally). Total energy 
transferred to the chest wall of the rat was 1.96 J 
(E = m × g × h, m: mass of the cylindrical weight 
(0.4 kg); g: gravity (9.8 m/s2); and h: height 
from the platform (0.5 m). CAPE (Sigma Aldrich, 
C8221) treatment was applied for 7 days after 
thoracic trauma (10 µmol/kg, intraperitoneally, 
dissolved in dimethyl sulfoxide). At the end of 
the seventh day, rats were sacrificed under 
anesthe-sia (ketamine/xylazine; 90/10 mg/kg) 
and blood samples were taken from the heart. 
Blood samples were centrifuged at 2,500 rpm 
for 5 minutes (THERMO/HERAEUS Labofuge 400 
R). Serum sam-ples were stored at −80°C for 
enzyme-linked immu-nosorbent assay (ELISA) 
study.

Serum IL-1β (YL biont, YLA0030RA), IL-6 
(YL biont YLA0031RA), and IL-10 (YL biont, 
YLA0440RA) levels were determined with 
the sandwich ELISA method according to the 
manufacturer’s instructions as picogram per 
milliliter. Cytokine levels were calculated based 
on the absorbance of complex cytokines-antibod-
ies (Multiskan Go microplate spectrophotometer, 
Thermo Scientific).

Results

Serum IL-1β, IL-6, and IL-10 levels are shown in 
Table 1. In the trauma group, there were increased 
IL-1β and IL-6 pro-inflammatory cytokine levels 

compared to the control group (p < 0.05). Also, 
the trauma group had decreased anti-inflamma-
tory IL-10 level compared to the control group. 
The trauma + CAPE group showed reduced 
pro-inflammatory IL-1β and IL-6 and increased 
anti-inflammatory IL-10 level (p < 0.05).

Discussion

In the present study, a model of blunt chest trauma 
was induced and the effect of CAPE, an important 
component of propolis, on the release of serum 
cytokines IL-1β, IL-6, and IL-10 was investigated. 
Our study is the first in the literature to show that 
CAPE increases the level of anti-inflammatory IL-10 
and inhibits the release of serum pro-inflammatory 
cytokines IL-1β and IL-6 in the thoracic trauma 
model.

Thoracic trauma, which is a source of high 
mortality and morbidity, may trigger a serum 
pro-inflammatory response and it leads to second-
ary damage of organs by activating the immune 
system and other inflammatory cells [8]. Cytokines 
are biological mediators that play an important 
role in the initiation and maintenance of the 
inflammatory response [28]. It was determined 
that the pro- and anti-inflammatory cytokines are 
in balance in the organism and that this balance is 
impaired in favor of pro-inflammatory cytokines in 
many diseases such as inflammatory bowel diseases 
[28,29], osteoarthritis [30], chronic obstructive pul-
monary disease [31], rheumatoid arthritis [32], etc. 
Recent studies have shown that thoracic trauma 
is directly related to pro-inflammatory cytokine 
release [33,34].

Raghavendran et al. [35] showed increased IL-1β 
levels in bronchoalveolar lavage in a rat blunt chest 
trauma model. Similarly, Ates et al. [36] showed 
elevated serum IL-1β and TNF-α concentrations 
in blunt chest trauma model in rats. In addition to 
an increase in IL-1β, an increase in NO release and 
nuclear factor kappa-beta (NF-κβ) expression was 
also observed. In our study, the serum level of IL-1β 

Table 1. Effect of CAPE on serum inflammatory cytokines 
IL-1β, IL-6, and IL-10 (pg/ml).

Control
Thoracic 
trauma

Thoracic 
trauma + CAPE

CAPE

IL-1β 83.9 ± 10.7 150.0 ± 25.5a 102.1 ± 11.6b 81.8 ± 7.6
IL-6 48.9 ± 6.0 94.1 ± 11.8a 66.6 ± 16.2b 51 ± 8.5
IL-10 24.7 ± 5.1 10.9 ± 3.7a 17 ± 3.4b 23.1 ± 4.5
ap < 0.05 compared to control group.
bp < 0.05 compared to thoracic trauma group.
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decreased significantly in the CAPE-treated group 
compared to the thoracic trauma group (p < 0.05). 
Ak et al. [37] reported that in a rat acute spinal injury 
model, CAPE treatment facilitates local tissue heal-
ing by lowering serum levels of TNF-α and IL-1β. In 
a methotrexate-induced hepatorenal injury model, 
CAPE administration was reported to reduce serum 
TNF-α and IL-1 levels as well as lower malondialde-
hyde, glutathione peroxidase, and myeloperoxidase 
levels compared to a model group.

IL-6 is a proinflammatory cytokine with paracrine 
and endocrine effects, which plays an important 
role in response to environmental factors such as 
infection and injury [38,39]. IL-6 is transported to 
the liver via the bloodstream, locally synthesized at 
the onset of inflammation and provides induction 
of acute phase proteins such as C-reactive protein 
(CRP), serum amyloid albumin, and haptoglobin 
[40]. Iraz et al. [41] showed increased serum IL-6 
and CRP levels in lipopolysaccharide-induced lung 
injury model. In a rat burn model, increased TNF-
α, interferon–gamma, and IL-6 levels were reported 
[42]. In our study, consistent with the literature, 
induction of thoracic trauma resulted in a signifi-
cant increase in serum IL-6 levels compared to the 
control group (p < 0.05). CAPE treatment provided 
a significant reduction in serum IL-6 levels. In a 
murine Helicobacter pylori-induced gastric injury 
model, CAPE administration was reported to reduce 
levels of IL-6 and NF-κβ, similar to our study [43].

IL-10 is an immunosuppressive cytokine 
secreted mainly by macrophages and other immu-
nological system cells [44]. It also has a therapeutic 
effect in many inflammatory diseases by inhibiting 
and suppressing immune system cell activation and 
functions [45]. Taniguchi et al. reported that the 
level of IL-6 and IL-10 increased significantly in a 
study of 22 patients with abdominal and thoracic 
trauma. Also, they reported that the ratio of IL-6/
IL-10 decreased from days 0 to 4 after trauma [46]. 
In a peripheral nerve injury model, Mietto et al. 
[47] showed that IL-10 plays an important role in
modulating inflammation and promoting regener-
ation in peripheral nerves in rats. It was reported
that different agents applied in many experimental
models inhibit tissue damage by increasing IL-10
synthesis [48,49]. In our study, IL-10 serum levels
were determined on the seventh day following chest
trauma and a significant increase was observed in
the CAPE-treated group compared to the thoracic
trauma group. Linard et al. [50] reported that CAPE
administration suppressed the expression of TNF
and IL-6 and found a significant increase in IL-10

levels in the intestines in a radiation-induced acute 
rat model. Similar to this result, the CAPE adminis-
tration in our study also increased the level of IL-10 
significantly.

TNF-α is a “master regulator” cytokine that 
mediates inflammatory response [16]. TNF-α stim-
ulation is associated with the activation of NF-κβ, 
mitogen-activated protein kinases, and caspase 
cascade [51]. In this study, CAPE may have inhib-
ited systemic inflammation by blocking TNF-α and 
NF-κβ activation.

In conclusion, in the current study, clearly, the 
CAPE administration inhibited pro-inflammatory 
IL-1β and provided an increase in pro-inflamma-
tory IL-10 level in the thoracic trauma model in 
rats. However, there is a need for more extensive 
studies to explain the association of CAPE therapy 
with TNF-α, NF-κβ, and inflammatory cytokines. 
These results suggest that CAPE may have potential 
as an alternative agent in traumatic and inflamma-
tory disorders.
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