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Introduction
The microbiomes study of animals has extensively 
appeared as a new discipline, possibly initiated by se-
quencing technologies to find the functional traits of 
microorganisms and taxonomic identity without culti-
vation. During the past 10-15 years, the rise of micro-
biomes science has provided a way to minimize chronic 
diseases of humans, particularly immunological, met-
abolic abnormality and anxiety health disorders. Re-
cently, microbiome science is usually used as a biomed-
ical discipline that emphasizes humans’ microbiology, 
helped by research on the laboratory mouse [1-3]. The 
most significant contribution to understanding the ani-
mal microbiomes has been provided by the research on 
the simple model animal such as lower vertebrates and 
invertebrates, which are associated with microbiomes 
with a lower level of taxonomic diversity. Relative to 
mammals, these simplistic systems provide simple pro-
tocols for manipulation of microbiota population and 
distribute role to specific copiotrophic microbes, devel-
op cost-effective experiments within less period, allow 
the intricate experimental designs and unusually for in-
vertebrates, avoid the critical animal welfare problems 

elevated by research on mammals [4,5].
The research on the gut microbiome is unique and valu-
able for a better understanding of functional, biological, 
and ecological processes inside hosts. The gut microbi-
ome performs many tasks with important significance 
for overall fitness and the host. Gut microbial commu-
nities play an essential role in many host organisms to 
break down complex carbohydrates to immunomodu-
lation [6,7]. The primary and critical characteristics in 
symbiotic gut microorganisms are to expose uncharac-
terized mechanisms, in addition to the development of 
prophylactic and clinical handlings that help both ani-
mals and humans [8,9]. The fruit fly Drosophila melan-
ogaster, honeybee Apis mellifera, nematode Caenorhab-
ditis elegan, and the zebrafish Danio rerio are simple 
model organisms. These biomedical models are gaining 
more attention because microbiome research is a direct 
way to effectively research neurobiology and immune 
function at the molecular level using these systems and 
animal development. This review discusses an outline 
for microbiome research of simple model animals, in-
cluding their importance and drawbacks. The review 
focuses on using simple model animals for microbiome 
research particularly (Figure 1).
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ABSTRACT
Microbiome research of the gut is an emerging discipline that seeks to understand 
better the functional and ecological dynamics of microbiota. The gut microbiota 
of honeybees is a unique community to investigate, as honeybees are ecologically 
essential pollinators of several crops grown for human consumption and they produce 
valuable products like royal jelly, wax and honey. Most importantly, the gut environment 
of Apis mellifera has unique characteristics that make it an excellent model system. 
This review discusses the honeybee gut microbiota significance, its effect on behavior 
and endocrine signalling, neurological effect of gut microbiota, perturbation of native 
microbiota, and structural differences of gut microbiota in summer and winter. This 
review also outlined the microbiome research on the traditional biomedical model’s 
honeybee, zebrafish, Drosophila melanogaster, and Caenorhabditis elegans command 
outstanding research resources tools are addressed. This review highlights the 
honeybee as a promising model insect to better understand honeybee gut microbiota, 
facilitating microbiome research and bee microbiota in general, and supporting future 
prospective.
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The A. mellifera, D. melanogaster, zebrafish and C. elegans 
have been primarily genetic models. The emerging and 
valuable model animals for microbiome research are A. 
mellifera due to microbiome interaction with xenobiotics, 
pesticides, and complicated. The A. mellifera has a strong 
technical and scientific source due to its significance for 
honey production and pollination. The zebrafish is an 

essential biomedical model in vertebrates, although its 
generation period is significantly more extended than C. 
elegans and D. Melanogaster (Figure 2). These tradition-
al model animals are gradually being implemented for 
host-microbiome interactions as the parallels in process-
es and patterns across the animal kingdom [10, 11].

Figure 1. Selection of simple model animals for microbiome research.

Figure 2. Limitations microbial partners and strengths of the honeybee and other model organisms for microbiome study.
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Outlines for Simple Model Animals 
The most important and emerging field is gut microbiota 
research, which increases understanding of gut environ-
ments’ functional and ecological dynamics. The study of 
honeybee gut microbiota highly rewards the community 
because honeybees produce valued commodities such as 
honey and wax for human utilization, also playing a role 
as primary pollinators of many crops. The A. mellifera gut 
habitat is a valuable model system due to its unique char-
acteristics [12,13]. The genetic manipulation tools and 
standardized laboratory protocols related to microbiome 
research for A. mellifera, D. melanogaster, and zebrafish 
and C. elegans are already developed to facilitate the re-
search community. Surface¬ sterilizing eggs can generate 
large numbers of axenic hosts usually using bleach, and 
raise the animals in sterile tubes or dishes [14,15]. The 
desired microorganisms resulting from gut homogenates 
and fecal pellets are mixed with a culture medium to ob-
tain gnotobiotic animals [16].
The D. melanogaster axenic can maintain through multi-
ple generations on nutrient-rich media. However, several 
experiments related to axenic of zebrafish and C. elegans 
are limited to young larvae. The bacterial community re-
quires for development and sustained growth C. elegans. 
Hence, this necessity can be fulfilled by a medium supple-
mented with artificial liposome nanoparticles [17,18].
The zebrafish axenic can be reared to the adult stage, but 
the process is expensive and laborious. The commercially 
available sterile fish food for axenic zebrafish is toxic, to 
produce and administer the live food such as a member 
of the genus Tetrahymena is time-consuming. These are 
the main problem related to feeding the axenic zebrafish 
[19,20]. All developmental stages of C. elegans and Zebraf-
ish larvae have significance. Some critical consideration 
has been offered to the design and explanation of micro-
biota studies for C. elegans and D. melanogaster because 
their hosts are microbes and various microorganisms 
Racz digest the food items, which make an essential con-
tribution to host nutrition [21,22]. However, zebrafish are 
omnivores, which feed on crustaceans, aquatic insects, 
and plant material. The C. elegans and D. melanogaster 
administer microorganisms for standard laboratory pro-
tocols. The most common laboratory diet for C. elegans 
and D. melanogaster is dead yeast [23-26]. Nevertheless, 
viable microorganisms can be separated regularly from 
the gut of both species, and some bacteria can persist and 
often proliferate for an extended period in the gut of D. 
melanogaster [27-29].
Significance of the honeybee gut microbiota
A. mellifera (the Western honeybee) is a pollinator safe-
guarding food security. A. mellifera is performing polli-

nation activity for more than 92 major economic crops. 
Products of A. mellifera, such as wax and honey, contribute 
to the economic importance of honeybee, accompanying 
a billion-dollar pollination industry. The high demand for 
modern agricultural practices (such as agrochemical us-
age and pesticide), commercial pollination facilities, and 
environmental problems (such as pathogen spread and 
poor nutrition) have challenged colony sustainability [30-
32]. The study related to the gut microbiota of A. mellifera 
has developed rapidly. Recent studies have shown distinct 
characteristics, which make the unique gut environment 
of the A. mellifera amongst other insects. Honey bees 
have been studied as model insects of social behaviour, 
developmental biology [33]. and behavioral disorders. 
The economic value of honeybees, especially from polli-
nation, is assessed in billions of dollars annually [34-37]. 
The worldwide concern about increasing seasonal mor-
tality rates of beehives motivates the research regarding 
ecological factors affecting bee health, including toxins, 
nutrition pathogens, and parasites. The complete genome 
of the honey bee sequenced and variation among the ge-
nomic within species has been surveyed [38-40]. 
Apis mellifera’s microbiota is a major contributor among 
several social animals transmitted through direct contact 
with hive mates during social interaction [41-43]. The gut 
communities show high ecological resilience; despite the 
environmental changes, a distinctive organism group is 
maintained both within and between individuals [44,45]. 
The distinctive taxonomic makeup of the microbiota of 
social bees, together with their essential biochemical host 
contributions, suggests a highly functional, coevolved cor-
relation between Apis mellifera and microbes [46,47]. In 
the end, the domesticated position of A.mellifera allows 
them a readily available system for microbiome research; 
that’s the reason why the gut ecosystem of A.mellifera 
plays a role as novel ecological facts with several possi-
ble applications [48,49] contributed to the first review of 
applicable methods for the culture and characterization 
of A. mellifera gut microbial communities. Recently, Zheng 
et al. Outlined the honeybee characteristic that makes an 
important experimental system for studies on gut mi-
crobiome via discussing established protocols and high-
lighting the comparison between the human hut and hon-
eybee microbiotas [50]. Based on previously discussed 
strategies for studying the bee microbiota, our review 
emphasizes the latest developments and suggests a new 
idea in this field. The information summarized here can 
also be appropriate for the investigation of other insects 
with similarly developed microbiota, particularly within 
Hymenoptera.
Microbial complex communities are present in almost ev-
ery place on the human body. Still, the microbes are relat-
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ed to the Gastrointestinal (GI) tract, home to a wide range 
of microbes in several animals, are of specific interest to 
their various impact on the host’s health. The gut micro-
biota of humans bolsters potential anti-pathogen assists 
in food digestion and regulates the immune system. Se-
quencing analysis and sequencing have been for correla-
tion identification between the diversity of disease and 
microbiota composition. Still, the experimental methods 
are crucial to getting through address cause, correlation, 
and effect relationship. As a practical and ethical study 
constraint on human experiments, the best model organ-
ism systems are important for experimental research of 
gut microbiota. In this review, we describe the honeybee 
gut microbiota as a model system that provides an exper-
imentally tractable and offers several parallels to humans’ 
gut microbiota of humans (Figure 3).

In (Figure 4), hive frames with capped brood (mature 
pupae) are separated from hives and transferred to the 
laboratory to create gnotobiotic bees. Pupae with eye pig-
mentation but incapable of moving are removed and kept 
in sterile dishes. Pupae are placed under hygienic con-
ditions, then within three days, microbiota-free worker 
bees will emerge. Alternatively, worker bees with free mi-
crobiota are also reared in the laboratory by manually lar-
val rearing, through this strategy needs more precise ex-
perimental infrastructure and less robust bees yield. The 
microbiota-free bees can be injected orally with whole 
communities or specific strains of bacteria to study the 
critical functions of gut microbiota and impact bee health 
and the mechanisms that microbes with one another and 
their host.

Figure 3. Timeline of microbiome study in honeybees and other organisms (general).

Figure 4. Differences and similarities between human and honeybee gut microbiota.



Review on Honeybee as a Simple Model Animal for Microbiome Research Work

5www.ajpbp.com

Effects on endocrine signalling and behaviour
A study associated with microbiota-free to conventional 
bee workers has revealed that the gut microbiota is need-
ed for weight gain, but ileum and midgut microbiota-free 
workers are not more substantial than usual bees. The 
weight gain effect is related to shifts in gene expression, 
endocrine signaling, and modulation in Drosophila insu-
lin-like/insulin signaling, also increased the vitellogenin 
level (nutritional modulator in honeybee). Kesnervoa et 
al. demonstrated that gram-positive bacteria (Bifidobac-
terium asteroides) stimulate the juvenile hormone deriv-
atives and prostaglandins production is known to influ-
ence bee development [10,51]. 
Schwarz et al. discovered the down regulation expression 
of vitellogenin in gnotobiotic worker bees and under hive 
condition, mono inoculated with S.alvi and subsequent in-
fection with Lotmaria passim (trypanosomatid parasite). 
As vitellogenin modulates the social behavior develop-
ment in honey bees, these observations recommends an 
essential role of gut microbiota impacting the social be-
haviour of bee [52,53].
Many experiments have been conducted on the possible 
relation between behavior and gut microbiota of hon-
eybees. Gut microbes may influence the host behavior 
by altering the biogenic amines level, such as dopamine, 
serotonin, and octopamine. Levels of biogenic amines in 
the brains of honeybee workers differ seasonally, and con-
centrations of amines increase in summer due to higher 
foraging activity [54]. Concentrations of amines in mi-
crobiota bees (newly emerged bees) are higher than the 
brains of adult bees (Conventional bees). Newly emerged 
bees and adult bees behave and respond differently; the 
sucrose of response of adult bees more readily and feed-
ing more, which is regularly observed in insulin signaling. 
These findings provide strong evidence that hormonal 
signaling and host behavior are altered by gut microbes 
[55].
Effect on immune system
The microorganism group in symbiotic relations with 
host animals can be essential for host health. Particularly, 
insects severely harbor valuable gut microbiota, benefi-
cial in disease resistance and food management [56]. The 
gut microbiota of A. mellifera comprises nearly nine spe-
cies of transmitted bacteria that have an evolutionary link 
with their host [57,58]. Gut microbiota can modulate the 
host’s immune function, indirectly influencing host fitness 
and other microbes. Colonization by a single S.alvi or con-
ventional microbiota resulted in the up-regulation of the 
hymenoptaecin and the antimicrobial peptides apidaecin 
in gut epithelial cells [59]. Frischella perrara (bacterium) 
plays a dramatic role in immune response in several hon-
eybee species, colonising the honeybee’s pylorus in which 
midgut passes through the ileum. Colonization by bacte-

rium triggers the formation of the ‘scab’ phenotypically 
looks like the dark ring around the gut, the formation of 
a dark ring caused by the melanization of an innate im-
mune system in honeybee. However, F. perrara (a bacteri-
um) interacts with the honey bee’s immune system [47].
The neurological effect of gut microbiota
The relation between neurophysiology, behavior, and gut 
microbes of hosts has exponentially grown in the last few 
years. Most research has focused on model organisms 
despite their broad significance for human health. For 
several reasons, the honey bee is an excellent model for 
studying bacterial symbionts’ neurological impact [60]. In 
the honeybee gut, a bacterial population comprised many 
sequence discrete populations SDPs, considered species 
of bacteria (Figure 5). Each bee is consisting a wide range 
of strain diversity. In each bee, distinctive strains combi-
nation represents that gut microbiota’s function differs 
in bees even in the same hive. Unique behavioral strains 
characterized through the division of labor present in 
the same hive and showed differences in gut microbiota 
structure and composition [61,62]. The behavior of work-
er bees is modulated by gut microbiota by increasing the 
level of sugar intake the same as by changing insulin sen-
sitivity. Bifidobacterium asteroides induce prostaglandins 
and Juvenile hormone III in the host gut, which can be in-
volved in brain-gut communication [63,64]. The research 
on the neurophysiological impact of gut microbes is in the 
initial stage, but the honeybee is a significant pollinator 
for securing food production. It could play an essential 
contribution to maintaining the hive health
Perturbation of the native microbiota
Perturbation of established and normal gut community, 
using disruptors and antibiotics, provides more micro-
biota function information. Raymann et al. examined the 
treatment effects with tetracycline, broad range spec-
trum, gut microbiota composition of the honeybee, and 
host fitness [65-67]. Bees treated by antibiotics showed 
modified relative diversity and abundance of core mi-
crobial taxa, elevated non-core taxa abundance, and in-
creased mortality rate and lower survival rate whenever 
exposure to the Serratia marcescens kz11 (opportunistic 
pathogen). Likewise, none of the dominant microbiota 
members were eliminated despite antibiotic treatment. 
Gut microbiota was harmful even opportunistic patho-
gens were not present; under laboratory conditions, adult 
bees showed a relatively higher mortality rate than mi-
crobiota free-bees after being treated with the antibiotic 
[58]. Li et al. revealed that disturbance in the microbiota 
of worker bees with antibiotics decreased the immune 
response and increased the susceptibility to Nosema cer-
anae (microsporidian parasite) that invasion by the mid-
gut epithelium [50,68].
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The structural difference of honeybee gut microbi-
ota in summer and winter
Adult bees contain specialized and relatively less complex 
gut microbiota. In comparison, the composition of the gut 
communities has differences in the summer and winter 
seasons. The amount and type of nutrients (i.e., nectar 
and pollen) present throughout the foraging period can 
profoundly affect the metabolic activity and gut microbi-
ota composition [69-71]. Likewise, different dietary hab-
itats and lifespan variations of worker bees throughout 
the winter and summer may affect gut microbiota’s com-
position [70,72,73] . The surprising finding in the winter 
bees is that gut microbiota lives longer in the foraging sea-
son, which is critical for the colony’s survival and health. 
In cold weather, most colony losses occur due to limited 
resources [74-76].
The gut microbiota of honey bees and human
Although bee health is a significant reason for investigat-
ing the gut microbiota of honeybees, the main advantages 
of this system are that there are many parallels to human 
gut microbiota.
Evolutionary and specificity to hosts 
The gut microbiota community of both humans and honey 
bees has the same environment as the host gut. Gut bac-
teria in humans and honeybees are likely to be precisely 
adapted to the habitats, as they coexist across millions of 
years with their hosts [6,77,78]. The most abundant five 
bacterial species linked with the guts of Meliponini (sting-
less bees) corbiculate (family Apidae), Bombus (bumble-
bees, Apis (Asian honey bees) most possibly descend from 
the community exist in the ancestor of bees, with suc-
ceeding strain gain, losses, the divergence of taxa making 
the gut communities found [38,79].

Transmission pattern through social interaction
Both gut bacteria and bee are mainly transmitted; in hon-
eybees, the evolutionary study of bacterial strains showed 
throughout corbiculate bee hosts recommend that their 
performance is associated with the change to social life-
styles [80-83]. Bees’ core microbiota is not present in the 
wasps or solitary bees; neither was isolated from the en-
vironment. In comparison, gut communities of many in-
vertebrates have unpredictable compositions regulated 
via bacteria from the environmental source [84-86].
Strain variation of bacterial species
Although the gut microbiota of bees possesses bacterial 
species in a limited number, each species shows extensive 
variation in strain, which is the same as in the microbiota 
of the human gut. Next-generation sequencing of the gene 
(single cope protein-coding) exhibited high G. apicola and 
S. alvi strain diversity in honey bee guts [87,88]. Both spe-
cies have large genetic pools of genes that do not exist in all 
strains. For instance, some accessory genes in the strains 
of G. apicola are contributed to carbohydrate metabolism; 
some strains are monosaccharides (toxic to host) and 
gene encoding for utilization of pollen cell walls compo-
nents [88-90]. Several strains have distinguished assort-
ments of T6SS, Type VI Secretion System-associated with 
antitoxin and toxin genes, which may affect which strains 
combination allows single host co-colonization. Further-
more, few strains of Apibacter (interbacterial antagonism 
by Bacteroidetes species) encoded similar to Type VI Se-
cretion systems used in the human gut [16,91,92]. 
Negative effect on host health
The communities of the gut microbiome harm the health 
of the host. In humans, dysbacteriosis or abnormal func-
tion or composition of the microbiota is linked with sever-

Figure 5. (a) Emergence of microbiota-free bees in laboratory (b) Inoculation of strains of gut symbionts, natural communities, or genet-
ically altered symbionts (c). Reared the honeybee under laboratory condition or marked and put back to the hive (d). Bee samples and 
sequencing facilitated the examination of composition and function.
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al diseases and causes poor diet, antibiotic treatment, and 
other disturbances [93-100]. For example, disturbance of 
the gut microbiome due to antibiotics treatment decreas-
es the resistance to infection by Clostridium difficile in-
fections in humans. In the same way, disruption in the gut 
microbiota of honey bees due to chemicals or antibiotic 
treatment increases the susceptibility to S. marcescens in-
fections.
Role in fermentation and short-chain fatty acid 
production
 The bee gut microbiota is located in the distal gut in other 
animals and humans. It involved fermentation and diges-
tion of carbohydrate polymers obtained from the plant’s 
cell walls. The function of bee guts microbiota differences 
with the gut microbiota of the other insects. For example, 
in the fruit fly Drosophila melanogaster, gut microbiota 
colonized in the midgut and not concerned with digesting 
the plant cell wall component; however, it is vital develop-
mental and immune signaling [101-106]. Even herbivores 
larvae of lepidopteran, which eat just plant material, seem 
not to depend upon the gut microbiome for nutrition and 
digestion. The availability of oxygen in the gut can affect 
the colonization pattern and influence the mutual rela-
tionship between gut microbiota. The guts of herbivorous 
insects are almost anoxic compared to D. melanogaster, 
controlled by aerobes and contains oxygen. Anoxia is 
maintained in the honey bee ileum through the S. alvi res-
piration; S. alvi is a bacterium linked with the ileum wall, 
which is driven by acetate, the abundant short-chain fatty 
acid in the gut [107-112].
History and exposure to antibiotic
Long-term use of antibiotics may have influenced the di-
versity in humans’ gut communities and caused a high 
level of resistance factors. Similarly, antibiotic exposure 
has impacted the bee gut communities, especially in 
those countries where most beekeepers have applied 
antibiotics to prevent or control the foulbrood (a larval 
bacterial disease) [112-115]. The use of antibiotics result-
ed in resistance in gut bacteria and isolated the bee from 
those countries in which beekeepers were not allowed 
to practice antibiotics in beekeeping. In both honey bee 
and human gut communities, the resistance factors have 
replaced the community members by horizontal transfer. 
Additionally, exposure to antibiotics directly influences 
the diversity and size of bee gut communities [116-120].
What is the functional role of the gut microbiome in 
different weather and colony health?
Colony losses and mortality rates depend upon the weath-
er seasons, including spring, summer, autumn, and win-
ter. The gut microbiota community showed the difference 
in different weather conditions in adult bees. Moreover, 
winter bees showed limited information about gut micro-
biota [121-125]. During the foraging season in winter, gut 

microbiota lives longer than adult bees which are severe 
threats to the colony’s survival. The mortality rate of bees 
is higher in winter weather than in other weather [126-
128]. In the future, further investigation is required to un-
derstand the life span and regulation of gut microbiota in 
adult bees during the winter season.

Discussion and Conclusion
This review illustrated the various advantages of model 
organisms for microbiota research in this review. Simple 
model organisms can provide mutual purposes to study 
the cellular and molecular mechanisms that support 
host-microbiome interaction, which is already identified 
in model animals and humans. These benefits include 
intrinsic characteristics, the ability to colonize to study 
microbes and host interaction, and the rearing of bees 
economically. For years, honeybee research has had a 
knowledge base in multiple fields: behavioural, experi-
mental protocols, ecological, developmental, genomics, 
and physiological information. This research’s motiva-
tion is that the gut microbiota of honey bees provides 
evidence for its essential functions related to preventing 
colony losses, preserving pollinators, and bee health.
Moreover, the gut microbiota of the bee and humans has 
several similarities. In this concern, a major reason for 
using the simple model organisms is described as the in-
teractions of host and microbiota, which are possibly re-
lated to humans also. The meaningful purpose of this re-
view is that many appropriate simple model species can 
contribute significantly to our understanding of animals 
and microbiome interactions. In the coming years, it is ex-
pected that leading findings on basics of host-microbiome 
interaction=ions from research on the traditional animal 
models, controlled by tools and excellent resources com-
manded by these species. Research on the behavioural 
phenotypes of gut microbes symbionts has consequenc-
es across medical and biological disciplines. In future re-
search, to increase the value of bacterial symbionts’ role 
in the social brain evolution, The first encouraging investi-
gation has recommended that homologous brain and gut 
microbiota interactions in increase and mammals may 
exist, indicating a profound evolutionary origin brain axis 
and gut microbiota. Establishing the function of gut mi-
crobiota in behavior, cognition and prebiotic dietary sup-
plementary as a method to regulate the behavioral char-
acteristics of animals as the strategic significance has the 
great potential to build up a distinct aspect on how honey 
bees, as well as other insects, will be handled in the future. 
Another critical question is how gene expression changes 
in the brain interact with the brain’s neuron connection to 
affect behavior? In the future, further studies on the roles 
of miRNA, alternative spicing, and epigenetic in regulat-
ing bee behavior and gene expression, which and what 
degree in protein-coding sequence and gene expression 
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enables changes in behavior? The most important ques-
tion is how novel and conserved behavioral genes relate 
to evolutionary and mechanistic contexts? What is the re-
lationship between behavioral and neurogenic as a gen-
eral phenomenon? A burgeoning review of literature has 
related differences in brain expression to regulate the be-
havioral changes in many species, but more work is need-
ed to explore the role of gut microbiota in honey bees and 
other simple model organisms.
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